
Synopsis by: Parnian Najafi

What is self-managed software

architecture?

 Components automatically configure

their intercommunication based on an

overall architectural specification in

order to achieves the goals of the

system, with minimum explicit

management

Self Managed Systems

 Self-configuration

 Self-adaptation

 Self-healing

 Self-monitoring

 Self-tuning

Self-* or autonomic systems

Self-configuration

 Components should configure

themselves to satisfy specification or

report that they cannot

Self-healing and self-adaptation

 In the case of changes in the

requirement specification, operational

environment, resource availability or

faults in the environment or system:

 Reconfigure

 Degrade gracefully

 Report an exception

Why an architecture-based

approach?

 Generality

 Level of abstraction

 Potential for scalability

 Builds on existing work

 Potential for an integrated approach

Others use architectural

approach too
 Oreizy : uses architectural approach-

adaptation and evolution management

 Garlan and Schmerl: use architectural models
for self-healing

 Dashofy, van der Hoak and Taylor use
architecture evolution manager for run-time
adaptation and self-healing in ArchStudio

 Gomaa and Hussein: use of dynamic software
reconfiguration and reconfiguration pattern for
software product families

…

Architectural Model for Self-

management

 Robotics

 Sense-plan-act (SPA)

 Garlan’s self-healing system:
 Monitoring

 Analysis/resolution

 Adaptation

 Gat:
 Control: Reactive feedback control

 Sequencing: Reactive plan execution

 Deliberation: Planning

Control Layer

 Consists of:

 Sensors

 Actuators

 Control loops

Deliberation

Sequencing

Control

Control Layer Responsibilities

 Self-tuning

 Event and status reporting to higher
levels

 Operations to support modification

 Component addition, deletion and
interconnection

 When the current configuration of
components is not designed to deal
with a situation, the layer detects this
failure and reports it to higher layers.

Deliberation

Sequencing

Control

Sequencing Layer

 Reacts to changes in state reported

from lower levels

 Execute plans with new control

behaviors and new operating

parameters for existing control layer

behavior

 Execute an action or sequence of

actions to handle the new situation

Deliberation

Sequencing

Control

Sequencing Layer Capabilities

 Introduce new components

 Recreate failed components

 Change component

interconnections

 Change component operating

parameter

Deliberation

Sequencing

Control

Sequence Layer Characteristic

 Essential characteristic of
change management layer is
that it consist of a set of pre-
specified(pre-computed) plans
which are activated in response
to state change.

 If a situation is reported for
which a plan does not exist, this
layer must invoke the services of
higher planning layer.

Deliberation

Sequencing

Control

Goal Management (Deliberation)

 Time consuming computation
 Planning based on the current state to

achieve the specification of high level goal

○ i.e. By current position of the robot and map
of its environment -> producing a route plan
for execution by sequencing layer

○ Changes like obstacles that are not in the
map cause re-planning

 Produces change management plans
according to requests from the layer
below and introduction of new goals

Deliberation

Sequencing

Control

Three layer model of self-

managed systems

 Immediate feedback actions at the lowest

level and the longest actions are at the top

level

Component Control Layer

 A component implements the set

of services that it provides (may

use other services to implement

them)

 Mode: abstracted view of internal

state of a component

Deliberation

Sequencing

Control

Operations on Components

Deliberation

Sequencing

Control

Research Challenge in

Component Control Layer

 Preserving safe application operation

during change.

 i.e change in a mechatronic system

controlling a vehicle.

Deliberation

Sequencing

Control

Change Management Layer

 Responsible for executing changes in
response either to changes in state
reported from the lower layer or in
response to goal changes.

 This layer is a precompiled set of
plans and tactics that respond to a
predicted class of state change.
 i.e in fault tolerant system, failure of a

component may cause a duplicate server
to immediately switch from standby to
active. Change management should make
another standby server.

Deliberation

Sequencing

Control

Research Challenge

 Distribution and decentralization defines
the difference between self-
management of complex software
systems and existing work on robotic
systems.

 Distribution raise issues like:
 Latency

 Concurrency

 Partial failures

 Coping with distribution and arbitrary
failures lead to the need for some level
of local autonomy while preserving
global consistency.

Deliberation

Sequencing

Control

Distribution and Decentralization

are troublemaking!

 Due to distribution obtaining

consistent view of the system

state to make change decisions

is hard.

 Decentralization of control makes

robust execution in cases with

partial failure, difficult.

Deliberation

Sequencing

Control

To solve these

 A decentralized change

management architecture makes

state changes to be serialized to

make sure configuration terminate

in a valid state.

Deliberation

Sequencing

Control

 Change management functionality is included with each
component

 Each component maintained a view of an overall system
and executed local changes in response to state changes
in the view.

 Problems:
 The view of the system has to be complete

 Requires a total order broadcast bus to keep views consistent

Deliberation

Sequencing

Control

 The architecture was a fully decentralized
architecture that reliably executed change in the
presence of arbitrary failure. It was not a
scalable architecture.

 i.e. systems that can accommodate partial
inconsistent views and a relax the need for
totally ordered broadcast communication

 Finding change management algorithm that can
tolerate inconsistency and will eventually
terminate in a system that satisfy constraints.

 The system should not violate safety constraints
while it is converging on a stable state

 Self stabilizing algorithms have specific
configuration and application

Deliberation

Sequencing

Control

 Since we wanted to preserve the global
structural constraints, a consistent view
of system architecture was necessary.

 A more behavioral view of the system
constraints will provide opportunity for
relaxing the consistency requirement.

 If we are not interested in architecture,
components can bind to any service that
satisfies the local requirement. Failure of
the remote service can trigger a search
for replacement service

Deliberation

Sequencing

Control

Goal Management Layer

 Precise specification of both

application goals and system goals

 Refinement from high-level goals to

specified goals (processable by

machines) with human assistance

Deliberation

Sequencing

Control

Challenge

 Goal specification that it is both

comprehensive by human users

and machine readable.

 Producing a change plan based on

system goals and current state of

the system

 May be intractable problem

 If tractable, response time may be

an issue

Deliberation

Sequencing

Control

Solutions

 Design a set of plans offline

 Try them

 Will the change plans satisfy any
possible system states?)
 used in active-standby server pairs

 Challenge:provide online planner, when
change management layer figure out
non of the current plans apply to
observed system state

 In decomposition of goals, operational
plan from the goals, constraining the
problem domain helps.

Deliberation

Sequencing

Control

Conclusion

 Self management at the architectural

level.

 In self-managed SW architecture,

components automatically configure

their interaction in a way that is

compatible with an overall architecture

specification and achieves the goals of

the system.

Conclusion

 Component Layer:
 Provide change management that:

○ reconfigures the software components

○ ensures application consistency

○ avoids undesirable transient behavior.

 Change Management Layer,
 Decentralized configuration management

○ Can tolerate inconsistent views of the system
state

○ Converge to a satisfactory stable state.

 Goal Planning Layer:
 On-line (perhaps constraint based) planning

Overall Challenge

 A comprehensive solution based on

integrated solutions to the challenges

supported by an appropriate

infrastructure.

