PRESENTATION ON SELF-MANAGED
SYSTEMS : AN ARCHITECTURAL
CHALLENGE

KRAMER AND JEFF MAGEE

COMPUTING IMPERIAL COLLEGE LONDON
SW7 2AZ, UK

{J.KRAMER,J.MAGEE}@IC.AC.UK

Synopsis by: Parnian Najafi




What is self-managed software
architecture?

Components automatically configure
their intercommunication based on an
overall architectural specification in
order to achieves the goals of the
system, with minimum explicit
management



Self Managed Systems

Self-configuration

Self-adaptation

Self-healing Self-* or autonomic systems
Self-monitoring

Self-tuning




Self-configuration

® Components should configure
themselves to satisfy specification or

report that they cannot
(@




Self-healing and self-adaptation

In the case of changes in the
requirement specification, operational
environment, resource availability or
faults Iin the environment or system:

Reconfigure
Degrade gracefully
Report an exception




Why an architecture-based
approach?

Generality

Level of abstraction

Potential for scalability

Builds on existing work

Potential for an integrated approach



Others use architectural
approach too

Oreizy : uses architectural approach-
adaptation and evolution management

Garlan and Schmerl: use architectural models
for self-healing

Dashofy, van der Hoak and Taylor use
architecture evolution manager for run-time
adaptation and self-healing in ArchStudio

Gomaa and Hussein: use of dynamic software
reconfiguration and reconfiguration pattern for
software product families



Architectural Model for Self-

management

® Robotics
® Sense-plan-act (SPA)

® Garlan’s self-healing system:
* Monitoring
» Analysis/resolution
» Adaptation

® Gat:
» Control: Reactive feedback control
* Sequencing: Reactive plan execution
* Deliberation: Planning




Control Layer

® Consists of:
* Sensors
e Actuators
e Control loops




Control Layer Responsibilities
Self-tuning B
Event and status reporting to higher W
levels

|Sequeq
When the current configuration of
components is not designed to deal

Operations to support modification
with a situation, the layer detects this Cont I

Interconnection

Component addition, deletion and
failure and reports it to higher layers. /



Sequencing Layer

Reacts to changes in state reported
from lower levels

Execute plans with new control
pehaviors and new operating
parameters for existing control layer
nehavior

Execute an action or sequence of
actions to handle the new situation e

V'

Deliberati

Sequencin




Sequencing Layer Capabilities

@ Introduce new components
® Recreate falled components

@ Change component
Interconnections

® Change component operating
parameter

Deliberat

Sequencin

A

N




Sequence Layer Characteristic

Essential characteristic of

change management layer is e
that it consist of a set of pre-
specified(pre-computed) plans
which are activated in response
to state change.

If a situation Is reported for
which a plan does not exist, this
layer must invoke the services of Coriy

higher planning layer. /

Sequencin



Goal Management (Deliberation)

Time consuming computation
Planning based on the current state to
achieve the specification of high level goal

o l.e. By current position of the robot and map
of its environment -> producing a route plan
for execution by sequencing layer

o Changes like obstacles that are not in the
map cause re-planning

Produces change management plans
according to requests from the layer
below and introduction of new goals

Deliberatio
Sequencin

Control

y'



Three layer model of self-
managed systems

mmediate feedback actions at the lowest
evel and the longest actions are at the top
evel

Goal

Management

? Change Plans
Plan Request

Manage ENRIEY
Management m

Change Actions

Status i
Component
Control C1 C2




Component Control Layer

A component implements the set
of services that it provides (may
use other services to implement
them)

Mode: abstracted view of internal
state of a component

; @ Control
ices Required
Component ‘ services
(ports)

Deliberati

Sequencin




Operations on Components

createC: T Deliberatio
— create component mstance C from type T.
delete C
— delete component mstance C.
bind C..r-C,.p | .
— connect required port r of component C; to
provided port p of component C,.
unbind C,.r
— disconnect required port r of component C,
set C,.m to val Control

— set mode m of component C, to val.




Research Challenge in
Component Control Layer

@ Preserving safe application operation
during change.

* |.e change in a mechatronic system
controlling a vehicle.

Deliberati

Sequenci

N

IN



Change Management Layer

Responsible for executing changes in
response either to changes in state Deliberatio
reported from the lower layer or In

response to goal changes.

This layer is a precompiled set of
plans and tactics that respond to a Sequencin
predicted class of state change.

l.e in fault tolerant system, failure of a

component may cause a duplicate server

to immediately switch from standby to
active. Change management should make Control

another standby server. /



Research Challenge

Distribution and decentralization defines

the difference between self- Deliberati
management of complex software

systems and existing work on robotic

systems.

Distribution raise issues like:
Latency
Concurrency
ETNEIRENT(ES
Coping with distribution and arbitrary
fallures lead to the need for some level Control
of local autonomy while preserving /

Sequencin

global consistency.



Distribution and Decentralization
are troublemaking!

Due to distribution obtaining
consistent view of the system
state to make change decisions
IS hard.

Decentralization of control makes
robust execution in cases with
partial failure, difficult.

Deliberati
Sequencin

Control

V'



To solve these

A decentralized change
management architecture makes
state changes to be serialized to
make sure configuration terminate
In a valid state. Peau<i

Deliberatio

Component Component Component

Control
Total Order

Reliable Broadcast
Group Membership




Change management functionality is included with each
component

Each component maintained a view of an overall system Deliberatio
and executed local changes in response to state changes
in the view.

Problems:
The view of the system has to be complete
Requires a total order broadcast bus to keep views consistent

Sequencin
Component Component Component
Manager
Total Order
Control

Reliable Broadcast
Group Membership




The architecture was a fully decentralized
architecture that reliably executed change in the
presence of arbitrary failure. It was not a
scalable architecture.

l.e. systems that can accommodate partial
Inconsistent views and a relax the need for
totally ordered broadcast communication

Finding change management algorithm that can
tolerate inconsistency and will eventually
terminate in a system that satisfy constraints.

The system should not violate safety constraints
while It is converging on a stable state

Self stabilizing algorithms have specific
configuration and application

Deliberati
Sequencin

Control

V'



Since we wanted to preserve the global
structural constraints, a consistent view Deliberat
of system architecture was necessary.

A more behavioral view of the system
constraints will provide opportunity for
relaxing the consistency requirement. SR

If we are not interested in architecture,
components can bind to any service that

satisfies the local requirement. Failure of

the remote service can trigger a search Control

for replacement service /\



Goal Management Layer

Precise specification of both
application goals and system goals

Refinement from high-level goals to

specified goals (processable by
machines) with human assistance

Deliberatio
Sequenci

Control

)V R



Challenge

Goal specification that it is both
comprehensive by human users
and machine readable.

Producing a change plan based on .
system goals and current state of -
the system

May be intractable problem
If tractable, response time may be

an issue ‘///\\\

Deliberatio

Control



Solutions

Design a set of plans offline
Try them Deliberatio
Will the change plans satisfy any
possible system states?)

used in active-standby server pairs
Challenge:provide online planner, when Sequencin
change management layer figure out

non of the current plans apply to
observed system state

n decomposition of goals, operational
olan from the goals, constraining the

problem domain helps. ‘/
N

Control




Conclusion

Self management at the architectural
level.

In self-managed SW architecture,
components automatically configure
their interaction in a way that is
compatible with an overall architecture
specification and achieves the goals of
the system.



Conclusion

Component Layer:

Provide change management that:

o reconfigures the software components
o ensures application consistency

o avolds undesirable transient behavior.

Change Management Layer,

Decentralized configuration management

o Can tolerate inconsistent views of the system
state

o Converge to a satisfactory stable state.

Goal Planning Layer:
On-line (perhaps constraint based) planning



Overall Challenge

A comprehensive solution based on
Integrated solutions to the challenges

supported by an appropriate
Infrastructure.







